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Imagine 400 ft-lbs of torque measured on a chassis dynamometer like a DynoJet (see
references at the end). This is a very nice number to have in any car, street or racing. In
dyno-speak, however, the interpretation of this number is a little tricky.

To start a dyno session, you strap your car down with the driving wheels over a big, heavy
drum, then you run up the gears gently and smoothly until you’re in fourth at the lowest
usable engine RPM, then you floor it, let the engine run all the way to redline, then shut
down. The dyno continuously measures the time and speed of the drum and the engine
RPM through a little remote radio receiver that picks up spark-plug noise. The only things
resisting the motion of the driving wheels are the inertia of the driveline in the car and the
inertia of the drum. The dyno ‘knows’ the latter, but not the former. Without these inertias
loading the engine, it would run up very quickly and probably blow up. Test-stand dynos,
which run engines out of the car, load them in different ways to prevent them from free
running to annihilation. Some systems use water resistance, others use electromagnetic; in
any case, the resistance must be easy to calibrate and measure. We are only concerned with
chassis dynos in this article, however.

What is the equation of motion for the car + dyno system? It is a simple variation on the
theme of the old, familiar second law of Newton. For linear motion, that law has the form
F =ma, where F is the net force on an object, m is its mass, and @ is its acceleration, or
time rate of change of velocity.

For rotational motion, like that of the driveline and dyno, Newton’s second law takes the
form T = J@ where T is the net torque on an object, J is its moment of inertia, and @
is its angular acceleration, or time rate of change of angular velocity. The purpose of this
installment of the Physics of Racing is to explain everything here and to run a few numbers.

To get the rotational equation of motion, we assume that the dyno drum is strong enough
that it will never fly apart, no matter how fast it spins. We model it, therefore, as a bunch of
point masses held to the center of rotation by infinitely strong, massless cables. With enough
point masses, we can approximate the smooth (but grippy) surface of the dyno drum as
closely as we would like.
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Total mass = m

Individual particle
Mass=m /N

Number of particles = N

T .
Radius = r
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speed = v

Individual particle ‘

Assume each particle receives a force of F| /N in the tangential direction. Tangential, of
course, means the same as circumferential or longitudinal, as clarified in recent installments
about slip and grip of tires. So, each particle accelerates according to F/N =ma/N . The N
cancels out, leaving @ = F'//m . Now, a is the rate of change of the velocity, and the velocity
is defined as v = r@ , whete r is the constant radius of the circle and @ 1is the angular
velocity in radians per second. The circumference of the circle is 2777, by definition, so a
drum of 3-foot radius has a circumference of about 6.28x3=18.8 feet. At 60 RPM, which is
one rev per second, each particle goes 18.8 feet per second, which 1s about 15x18.8/22=12.8
mph. RPM is one measurement of angular velocity, but it’s more convenient to measure it
such that 277 angular units go by every second. Such units save us from having to track
factors of 27 all over the math. So, there are 277 radians per revolution, and the equation
v = r@ is seen as a general expression of the example that 277 x revolutions per second =
18.8 feet per second = velocity.

Since 7 is constant, it has no rate of change. Only @ has one, measured in radians per
second per second, or radians per second squared, or rad / sec’ , and denoted with an
overdot: @ . The equation of motion, so far, looks like a = v = ar = F/m. Now, we know

that torque is just force times the lever arm over which the force is applied. So, a force of F
at the surface of the drum translates into a torque of T = Fr applied to the shaft—or by the

shaft, depending on point of view. So we write @or=F/m=T /rm , which we can rearrange
to omr® =T . We can make this resemble the linear form of Newton’s law if we define

J =mr?, the moment of inertia of the drum, yielding 7' = J@, which looks just like
F = ma if we analogize as follows: FoTl,Jeom a=veo.

This value for J only works for this particular model of the drum, with all the mass elements
at distance »r from the center. Suffice it to say that a moment of inertia for any other }'nodel
of the drum could be computed in like manner. It turns out that the moment of inertia of a
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solid cylindrical drum is half as much, namely J = Lmr® . Moments of inertia for common

shapes can be looked up all over the place, for instance at
]ntp:f/www.ph\'sics.uoguclph‘c:l/[utoria]s/mrquc/O.t()rquc.inertia.hrml.

So, now, the dyno has a known, fixed value for J, and it measures @ very accurately. This
enables it to calculate trivially just how much torque is being applied by the driving wheels of
the car to the drum. But it does nof know the moment of inertia of the driveline of the car,
let alone the radius of the wheels, the gear selected by the driver, the final-drive ratio in the
differential, and so on. In other words, it knows nothing about the driveline other than
engine RPM.

Everyone knows that the transmission and final-drive on a car multiply the engine torque.
The torque at the driving wheels is almost always much larger than the flywheel torque, and
i’s larger in lower gears than in higher gears. So, if you run up the dyno in third gear, it will
accelerate faster than if you run it up in fourth gear. Yet, the dyno reports will be
comparable. Somehow, without knowing any details about the car, not even drastic things
like gear choice, the dyno can figure out flywheel torque. Well, yes and no.

It turns out that all the dyno needs to know is engine RPM. It does not matter whether the
dyno is run up quickly with a relatively large drive-wheel torque (DWT) ot run up slowly
with a relatively small DWT. Furthermore, the radius of the driving wheels and tires also
does not matter. Here’s why.

Wheel RPM is directly proportional to drum RPM, assuming the longitudinal slip of the tires
is within a small range. The reason is that at the point of contact, the drum and wheel have
the same circumferential (longitudinal, tangential) speed, so

= Aw,,. ,where A=r [T -

= = S
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whee = "wheel Fw wheel

Engine RPM is related to wheel RPM by a factor that depends on the final-drive gear ratio
f and the selected gear ratio g;,i=1,2,3,.... We write @, = B(f,8:) @ peq - Usually,

engine RPM is much larger than wheel RPM, so we can expect B(f,g;) to be larger than 1

most of the time. So, we get
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Oyeum = e

A 4B(f.g)

We also know that, by Newton’s Third Law, that the force applied to the drum by the tire is
the same as the force applied to the tire by the drum. Therefore the torques applied are in
proportion to the radii of the wheel+tire and the drum, namely that

T 0 Trum
th,u:'l = =t = Fdrum =4
lr\n;ha:\.-l I’r‘dr\m‘u
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ot T, = AT, Recalling that the transmission gear and final drive multiply engine torque,
we also know that Ty = B(/8;) Tongine s © Ty = 4B (&) T, o - But we already know

drum

D). e
AB(f,g;): it’s the ratio of the RPMs, so T, =———TI ., , or, more usefully,

engine ?
drum
T = wn.irurn T = a)dtu.m J a)
engine drum drum
engine engine

Every term on the right-hand side of this equation is measured or known by the dyno, so we
can measure engine torque independently of car details! We can even plot T, versus

(0]

e » EEfectively taking the run-up time and the drum data out of the report.

Almost. There is a small gotcha. The engine applies torque indirectly to the drum, spinning it
up. But the engine is a/s0 spinning up the clutch, transmission, drive shaft, differential, axles,
and wheels, which, all together, have an unknown moment of inertia that varies from car-to-
car, though it’s usually considerably smaller than J , the moment of inertia of the drum. But,
in the equations of motion, above, we have not accounted for them. More properly, we
should write

T,

engine

=Lt (747

enginge

miscellaneous ) mdrum

This doesn’t help us much because we don’t kKnow J_ i o » 0 We pull a fast one and

rearrange the equation:

define T = Linm_ g

l()SS

miscn:ilancnusa)drum
engne

(0] -
= e derum

engine

T. -1

engine loss

This is why chassis dyno numbers are always lower than test-stand dyno numbers for the

same engine. The chassis dyno measures T, ... — T, and the test-stand measures T, .. . Of

loss ?
course, those trying to sell engines often report the best-sounding numbers: the test-stand
numbers. So, don’t be disappointed when you take your hot, new engine to the chassis dyno
after installation and get numbers 15% to 20% lower than the advertised ‘at the crankshaft’
numbers in the brochure. It’s to be expected. Typically, however, you simply do not know
T,.: it's a number you take on faith.

Let’s run a quick sample. The following numbers are pulled out of thin air, so don’t hang me
on them. Suppose the drum has 3-foot radius, is solid, and weighs 6,400 lbs, which ,15 about
200 slugs (remember slugs? One slug of mass weighs about 32 pounds at the Earth’s
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surface). So, the moment of inertia of the drum is about Lmr? =900 slug - ft* . Let’s say that

the engine takes about 15 seconds to run from 1,500 RPM to 6,000 RPM in fourth gear, with
a time profile like the following:

e ¥ drum drum drum RPM
t |RPM | MPH |vFPS | @ [0} RPM ratio Torque
0] 1,500 35| 51.33 17.11 0.00 163.40 | 0.1089 0.00
1| 1,800 42 | 61.60 20.53 3.42 196.08 0.1089 335.51
2| 2,100 49 | 71.87 23.96 3.42 228.76 0.1089 335:51
31 2,400 56 | 82.13 27.38 3.42 261.44 | 0.1089 335.51
4| 2,700 63| 92.40 30.80 3.42 29412 | 0.1089 | 335.51
51 3,000 70 | 102.67 34.22 3.42 326.80 0.1089 335.51
6| 3,300 77 | 112.93 37.64 3.42 35948 | 0.1089 | 335.51
7| 3,600 84 | 123.20 41.07 3.42 392.16 | 0.1089 | 335.51
81 3,900 91 | 133.47 44.49 3.42 424.84 | 0.1089 | 335.51
9| 4,200 98 | 143.73 47.91 3.42 457.52 | 0.1089 335.51
10 | 4,500 105 | 154.00 51.33 3.42 490.20 | 0.1089 | 335.51
11| 4,800 112 | 164.27 54.76 3.42 522.88 | 0.1089 | 335.51
12 | 5,100 119 | 174.53 58.18 3.42 555.56 | 0.1089 | 335.51
13 | 5,400 126 | 184.80 61.60 3.42 588.24 | 0.1089 | 335.51
14 | 5,700 133 | 195.07 65.02 3.42 62092 | 0.1089 | 335.51
15| 6,000 140 | 205.33 68.44 342 653.60 | 0.1089 | 335.51

The “v MPH” column is just a straight linear ramp from 35 MPH to 140 MPH, which are
approximately right in my Corvette. The “v FPS” column is just 22/15 the v MPH. The
drum @ is in radians per second and is just v FPS divided by 3 ft, the drum radius. The
drum @ is just the stepwise difference of the drum @ numbers. It’s constant, as we would
expect from a run-up of the dyno at constant acceleration. The drum RPM is 60/27 times
the drum @. The RPM ratio is just drum RPM divided by engine RPM, and it must be
strictly constant, so this is a nice sanity check on our math. Finally, the torque column is the
RPM ratio times J =900 slug - ft* times drum @ . We see a constant torque output of about
335 ft-Ibs. Not bad. It implies a test-stand number of between 394 and 418, corresponding
to 15% and 20% driveline loss, respectively. Looks like we nailed it without ‘cooking the
books’ too badly. Of course, we have a totally flat torque curve in this little sample, but that’s
only because we have a completely smooth ramp-up of velocity.

Dyno reports often will be labeled ‘Rear-wheel torque’ (RWT) or, less prejudicially, ‘drive-
wheel torque’ (DWT) to remind the user that there is an unknown component to the
measurement. These are well intentioned misnomers: do not be mislead! What they mean is
‘engine torque as if the engine were connected to the drive wheels by a massless driveline’, or
‘engine torque as measured at the drive wheels with an unknown but .relau'vely small inertial
loss component’. It should be clear from the above that the actual drive-wheel torque cannot
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be measured without knowing 4 , the ratio of the drum radius to the wheel+tire radius. It’s
slightly ironic that an attempt to clear up the confusion risks introducing more confusion.

In the next installment, we relate the equations of motion for the driving wheel to the
longitudinal magic formula to compute reaction forces and get equations of motion for the
whole car.

References:

http: //www.c5-corvette.com/DynoJet Theroy.htm [sic]
http://www.mustangdyne.com/pdfs/7K%20manualv238.pdf
http://www.revsearch.com/dynamometer/torque vs horsepower.html

Attachments:

For those accessing this document electronically, I've included the little spreadsheet I used
to simulate the dyno run as an embedded Excel object. For those not accessing this
electronically, this will appear simply as a replica of the table above.

t |e RPM|v MPH [v FPS |drum omega [omega dot [drum RPM |RPM ratio | Torque
0| 1,500 35| 51.33 1711 0.00 163.40] 0.108932717 0.00
1] 1,800 42| 61.60 20.53 3.42 196.08| 0.108932717| 335.51
2l 2,100 49| 71.87 23.96 3.42 228.76| 0.108932717] 335.51
3| 2,400 56| 82.13 27.38 3.42 261.44] 0.108932717] 335.51
4] 2,700 63| 92.40 30.80 3.42 294.12]| 0.108932717]| 335.51
5] 3,000 70]102.67 34.22 342 326.80] 0.108932717] 335.51
6| 3,300 77]112.93 37.64 3.42 359.48] 0.108932717| 335.51
7| 3,600 84123.20 41.07 3.42 392.16] 0.108932717| 335.51
8| 3,900 91]133.47 44.49 3.42 424.84| 0.108932717| 335.51
9| 4,200 98]143.73 47.91 3.42 457.52] 0.108932717| 335.51
10] 4,500 105] 154.00 51.33 3.42 490.20] 0.108932717| 335.51
11| 4,800 112{164.27 54.76 3.42 522.88| 0.108932717| 335.51
12{ 5,100 119]174.53 58.18 3.42 555.56] 0.108932717| 335.51
13| 5,400 126]184.80 61.60 3.42 588.24| 0.108932717] 335.51
14] 5,700 133]195.07 65.02 3.42 620.92| 0.108932717| 335.51
15| 6,000 140{205.33 68.44 3.42 653.60| 0.108932717] 335.51

ERRATA:

* Part 14, yet again, the numbers for frequency are actually in radians per second, not in cycles per
second. There are 27 cycles per radian, so the 4 Hz natural suspension frequency I calculated and
then tried to rationalize was really 4 /6.28 Hz, which is quite reasonable and not requiring any
rationalization. Oh, what tangled webs we weave...

* Physical interpretations of slip on page 2 of part 24: “Car (hub) moving forward, CP moving slowly
forward w.r.t. ground, resisting car motion.” Should be “Car (hub) moving forward, CP moving
slowly forward w.r.t. HUB, resisting car motion.”

* Part 21, in the back-of-the-envelope numerical calculation just before the 3-D plot at the end of the
paper, I correctly calculated tan"' (0.822) = 0.688 , but then incorrectly calculated tan™' (SB)~-SB as

_0.266. OFf course, it’s 0.688 —0.822 =—0.134. One of the hazards of doing math in one’s head all

the time is the occasional slip up. Normally, I check results with a calculator just to be really sure, but

some are so trivial it just seems unnecessary. Naturally, those are the ones that bite me.
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